
Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

Packet Capture, Filtering and Analysis
Today’s Challenges with 20 Years Old Issues

Alexandre Dulaunoy

alexandre.dulaunoy@circl.lu

January 20, 2012

Alexandre Dulaunoy Packet Capture, Filtering and Analysis

Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

Promiscuous mode
BPF
BPF - Filter Syntax
BPF - Filter Syntax 2
BPF - Filter Syntax 3
BPF - Filter Syntax 4
BPF - Filter Syntax 5
BPF - Filter Syntax 5 bis
BPF - Filter Syntax 6
BPF - Filter Syntax 7
Libpcap dev - a very quick introduction
Libpcap - a very quick introduction 2/2

Promiscuous mode

Where can we capture the network data ? a layered approach

A network card can work in two modes, in non-promiscuous mode or
in promiscuous mode :

In non-promiscuous mode, the network card only accept the frame
targeted with is own MAC or broadcasted.
In promiscuous mode, the network card accept all the frame from the
wire. This permits to capture every packets.

ifconfig eth0 promisc

Other approaches possible to capture data (Bridge interception,
dup-to of a packet filtering, ...)

A side note regarding wireless network, promiscuous mode is only
capturing packet for the associated AP. You’ll need the monitor mode, to
get capturing everything without being associated to an AP or in ad-hoc
mode.

Alexandre Dulaunoy Packet Capture, Filtering and Analysis

Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

Promiscuous mode
BPF
BPF - Filter Syntax
BPF - Filter Syntax 2
BPF - Filter Syntax 3
BPF - Filter Syntax 4
BPF - Filter Syntax 5
BPF - Filter Syntax 5 bis
BPF - Filter Syntax 6
BPF - Filter Syntax 7
Libpcap dev - a very quick introduction
Libpcap - a very quick introduction 2/2

BPF History

How to get the data from the data link layers ?

BPF (Berkeley Packet Filter) sits between link-level driver and the
user space. BPF is protocol independant and use a
filter-before-buffering approach. (NIT on SunOS is using the
opposite approach).

BPF includes a machine abstraction to make the filtering (quite)
efficient.

BPF was part of the BSD4.4 but libpcap provide a portable BPF for
various operating systems.

The main application using libpcap (BPF) is tcpdump. Alternative
exists to libpcap from wiretap library or Fairly Fast Packet Filter.

Network data capture is a key component of a honeynet design.

Alexandre Dulaunoy Packet Capture, Filtering and Analysis

Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

Promiscuous mode
BPF
BPF - Filter Syntax
BPF - Filter Syntax 2
BPF - Filter Syntax 3
BPF - Filter Syntax 4
BPF - Filter Syntax 5
BPF - Filter Syntax 5 bis
BPF - Filter Syntax 6
BPF - Filter Syntax 7
Libpcap dev - a very quick introduction
Libpcap - a very quick introduction 2/2

BPF - Filter Syntax

How to filter specific host :

host myhostname

dst host myhostname

src host myhostname

How to filter specific ports :

port 111

dst port 111

src port 111

Alexandre Dulaunoy Packet Capture, Filtering and Analysis

Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

Promiscuous mode
BPF
BPF - Filter Syntax
BPF - Filter Syntax 2
BPF - Filter Syntax 3
BPF - Filter Syntax 4
BPF - Filter Syntax 5
BPF - Filter Syntax 5 bis
BPF - Filter Syntax 6
BPF - Filter Syntax 7
Libpcap dev - a very quick introduction
Libpcap - a very quick introduction 2/2

BPF - Filter Syntax

How to filter specific net :

net 192.168

dst net 192.168

src host 192.168

How to filter protocols :

ip proto \tcp

ether proto \ip

Alexandre Dulaunoy Packet Capture, Filtering and Analysis

Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

Promiscuous mode
BPF
BPF - Filter Syntax
BPF - Filter Syntax 2
BPF - Filter Syntax 3
BPF - Filter Syntax 4
BPF - Filter Syntax 5
BPF - Filter Syntax 5 bis
BPF - Filter Syntax 6
BPF - Filter Syntax 7
Libpcap dev - a very quick introduction
Libpcap - a very quick introduction 2/2

BPF - Filter Syntax

Combining expression :

&& -> concatenation

not -> negation

|| -> alternation (or)

Offset notation :

ip[8] Go the byte location 8 when not specified

check 1 byte

tcp[2:2] Go the byte location 2 and read 2 bytes

tcp[2:2] = 25 (similar to dst port 25)

Matching (detailed after) is also working tcp[30:4] = 0xDEADBEEF

Alexandre Dulaunoy Packet Capture, Filtering and Analysis

Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

Promiscuous mode
BPF
BPF - Filter Syntax
BPF - Filter Syntax 2
BPF - Filter Syntax 3
BPF - Filter Syntax 4
BPF - Filter Syntax 5
BPF - Filter Syntax 5 bis
BPF - Filter Syntax 6
BPF - Filter Syntax 7
Libpcap dev - a very quick introduction
Libpcap - a very quick introduction 2/2

BPF - Filter Syntax

Offset notation and matching notation (what’s the diff?):

ip[22:2]=80

tcp[2:2]=80

ip[22:2]=0x80

tcp[2:2]=0x80

Alexandre Dulaunoy Packet Capture, Filtering and Analysis

Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

Promiscuous mode
BPF
BPF - Filter Syntax
BPF - Filter Syntax 2
BPF - Filter Syntax 3
BPF - Filter Syntax 4
BPF - Filter Syntax 5
BPF - Filter Syntax 5 bis
BPF - Filter Syntax 6
BPF - Filter Syntax 7
Libpcap dev - a very quick introduction
Libpcap - a very quick introduction 2/2

BPF - Filter Syntax

Using masks to access ”bits” expressed information like TCP flags:

+-+-+-+-+-+-+-+-+

|C|E|U|A|P|R|S|F|

|W|C|R|C|S|S|Y|I|

|R|E|G|K|H|T|N|N|

+-+-+-+-+-+-+-+-+

tcp[13] = 2 (only SYN -> 00000010)

tcp[13] = 18 (only SYN, ACK -> 00010010)

tcp[13]&4 = 4 (matching RST ->00000100&00000100)

Alexandre Dulaunoy Packet Capture, Filtering and Analysis

Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

Promiscuous mode
BPF
BPF - Filter Syntax
BPF - Filter Syntax 2
BPF - Filter Syntax 3
BPF - Filter Syntax 4
BPF - Filter Syntax 5
BPF - Filter Syntax 5 bis
BPF - Filter Syntax 6
BPF - Filter Syntax 7
Libpcap dev - a very quick introduction
Libpcap - a very quick introduction 2/2

BPF - Filter Syntax

If you don’t want to match every bits, you have some variations.

Matching only some bits that are set :

tcp[12] &9 != 0

If you want to match the exact value without the mask :

tcp[12] = 1

Alexandre Dulaunoy Packet Capture, Filtering and Analysis

Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

Promiscuous mode
BPF
BPF - Filter Syntax
BPF - Filter Syntax 2
BPF - Filter Syntax 3
BPF - Filter Syntax 4
BPF - Filter Syntax 5
BPF - Filter Syntax 5 bis
BPF - Filter Syntax 6
BPF - Filter Syntax 7
Libpcap dev - a very quick introduction
Libpcap - a very quick introduction 2/2

BPF - Filter Syntax

Using masks to access ”bits” expressed information like IP version:

+-+-+-+-+-+-+-+-+

|Version| IHL |

+-+-+-+-+-+-+-+-+

ip[0] & 0xf0 = 64

ip[0] & 0xf0 = 96

Alexandre Dulaunoy Packet Capture, Filtering and Analysis

Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

Promiscuous mode
BPF
BPF - Filter Syntax
BPF - Filter Syntax 2
BPF - Filter Syntax 3
BPF - Filter Syntax 4
BPF - Filter Syntax 5
BPF - Filter Syntax 5 bis
BPF - Filter Syntax 6
BPF - Filter Syntax 7
Libpcap dev - a very quick introduction
Libpcap - a very quick introduction 2/2

BPF - Filter Syntax on Payload

Matching content with a bpf filter. bpf matching is only possible on
1,2 or 4 bytes. If you want to match larger segment, you’ll need to
combine filter with &&.

An example, you want to match ”GE” string in a TCP payload :

echo -n "GE" | hexdump -C

00000000 47 45 |GE|

sudo tcpdump -s0 -n -i ath0 "tcp[20:2] = 0x4745"

Alexandre Dulaunoy Packet Capture, Filtering and Analysis

Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

Promiscuous mode
BPF
BPF - Filter Syntax
BPF - Filter Syntax 2
BPF - Filter Syntax 3
BPF - Filter Syntax 4
BPF - Filter Syntax 5
BPF - Filter Syntax 5 bis
BPF - Filter Syntax 6
BPF - Filter Syntax 7
Libpcap dev - a very quick introduction
Libpcap - a very quick introduction 2/2

Libpcap dev - a very quick introduction

How to open the link-layer device to get packet :

pcap_t *pcap_open_live(char *device, int snaplen,

int promisc, int to_ms,

char *ebuf)

How to use the BPF filtering :

int pcap_compile(pcap_t *p, struct bpf_program *fp,

char *str, int optimize,

bpf_u_int32 netmask)

int pcap_setfilter(pcap_t *p,

struct bpf_program *fp)

Alexandre Dulaunoy Packet Capture, Filtering and Analysis

Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

Promiscuous mode
BPF
BPF - Filter Syntax
BPF - Filter Syntax 2
BPF - Filter Syntax 3
BPF - Filter Syntax 4
BPF - Filter Syntax 5
BPF - Filter Syntax 5 bis
BPF - Filter Syntax 6
BPF - Filter Syntax 7
Libpcap dev - a very quick introduction
Libpcap - a very quick introduction 2/2

Libpcap - a very quick introduction 2/2

How to capture some packets :

u_char *pcap_next(pcap_t *p, struct pcap_pkthdr *h)

How to read the result (simplified) from the inlined structs :

sniff_ethernet addr

sniff_ip addr + SIZE_ETHERNET

sniff_tcp addr + SIZE_ETHERNET

+ {IP header length}

payload addr + SIZE_ETHERNET

+ {IP header length}

+ {TCP header length}

Alexandre Dulaunoy Packet Capture, Filtering and Analysis

Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

Libpcap libraries
Libpcap tools

Libpcap libraries

You don’t like C and you’ll want to code quickly for the workshop...
Here is a non-exhaustive list of libcap (and related) binding for other
languages :

Net::Pcap - Perl binding

rubypcap - Ruby binding with a nice OO interface

pylibpcap, pypcap - Python bindings

plokami - Common Lisp pcap binding

Alexandre Dulaunoy Packet Capture, Filtering and Analysis

Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

Libpcap libraries
Libpcap tools

Libpcap tools

tcpdump, tcpslice

ngrep (you can pass regex search instead of offset search)

tshark, wireshark

tcpdstat

tcptrace

ipsumdump (relying on click router library)

tcpflow

ssldump

Alexandre Dulaunoy Packet Capture, Filtering and Analysis

Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

Digging in real packet captures

Practical session will be the analysis of a packet capture in a pcap format.

Where to start? Focus on little events? big events?

Can I find the attacker? the kind of attack?

You can use any of the tools proposed but...

... you can build your own tools to ease your work.

Time reference is a critical part in forensic analysis.

Be imaginative.

Alexandre Dulaunoy Packet Capture, Filtering and Analysis

Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

Capture
Analyzing

Common issues at capture level

Appropriate snaplen size (tcpdump -s0?)

Network card/driver performance (pps versus bit/s)

Size of stored packet capture (streaming versus storing)

The pre-filter dilemma

Capture after attacks (and not before)

Alexandre Dulaunoy Packet Capture, Filtering and Analysis

Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

Capture
Analyzing

Total size of packet capture session can be very large

Disk access versus memory access
A multitude of small or large files
pcap format and the lack of metadata (e.g. usually metadata is the
filename)

Noise versus ”interesting” traffic

Network baseline doesn’t usually exist before the incident
Noise→malicious traffic classification dilemma

Protocol detection

port number 6= protocol
Detection of covert channels

Alexandre Dulaunoy Packet Capture, Filtering and Analysis

Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

Capture
Analyzing

Packet capture and analysis are performed by software and software
is prone to attack

Don’t underestimate the attackers to compromise or divert your
network capture/analysis
Parser and dissector are a common place for software bugs and
vulnerabilities

Passive detection of your network capture/forensic tools

Attackers don’t like to be trapped or monitored
Indirect detection like the DNS resolving are not unusual

Alexandre Dulaunoy Packet Capture, Filtering and Analysis

Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

TCP reassembly
Implementation flaws in TCP reassembly tools
Attacking the TCP implementation
Countermeasures

Attacking TCP reassembly

Definitions and terminology

A PCAP file contains network packets

Analyst is the person that is analyzing a PCAP file

An attacker is the person that tries to lure the analyst

A 4-tuple is (source IP, source port, destination IP, destination port)

A TCP session

Starts with the TCP ESTABLISHED state
Ends with the TCP CLOSED state

Alexandre Dulaunoy Packet Capture, Filtering and Analysis

Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

TCP reassembly
Implementation flaws in TCP reassembly tools
Attacking the TCP implementation
Countermeasures

Introduction
TCP reassembly

1
2
3

31 2 64 5 7 8 9
Stream

P1

P2

P3

P4

P5

S
Y

N
A

C
K

A
C

K
A

C
K

FI
N

4
5
6
7
8
9

TCP header

TCP payload byte(S
ou

rc
e

IP
, S

ou
rc

e
P

or
t,

D
es

tin
at

io
n

IP
, D

es
tin

at
io

n
P

or
t)

Alexandre Dulaunoy Packet Capture, Filtering and Analysis

Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

TCP reassembly
Implementation flaws in TCP reassembly tools
Attacking the TCP implementation
Countermeasures

Related work

TCP reassembly is not new . . . and some attacks still work . . .

TCP Reassembly Attacks for Network Intrusion Detection Systems
Tools

Fragrouter → NIDS benchmark

Attack countermeasures

Traffic Normalization → remove ambiguities

Reference

Nidsbench (1999) describes NIDS tests and attacks
SniffJoke (2011) downgrade the sniffer technology from multi
gigabits to multi kilobits

Alexandre Dulaunoy Packet Capture, Filtering and Analysis

Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

TCP reassembly
Implementation flaws in TCP reassembly tools
Attacking the TCP implementation
Countermeasures

Tools

Targeted tools

Tcpflow Tcptrace
Wireshark Tcpick

Used tools

Tcpdump User Mode Linux Fragrouter
Iptables Socat Nc

→ Standard tools of network researchers and operators

Alexandre Dulaunoy Packet Capture, Filtering and Analysis

Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

TCP reassembly
Implementation flaws in TCP reassembly tools
Attacking the TCP implementation
Countermeasures

Launching Valgrind on TCP reassembly tools

Error Tcptrace Tcpflow Tcpick
Invalid read s=4 5 0 0 occ.
Invalid read s=1 2 11 0 occ.
Definitely lost 345 0 16 bytes
Possibly lost 49152 0 0 bytes
Invalid fd 36196 0 0 occ.
Uninitialization 0 4 2 occ.

Alexandre Dulaunoy Packet Capture, Filtering and Analysis

Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

TCP reassembly
Implementation flaws in TCP reassembly tools
Attacking the TCP implementation
Countermeasures

Attacking the TCP implementation

Definition

Most of the forensics tools have their own TCP/IP implementation

TCP/IP implementations are often incomplete or defective

Example

IP fragmentation is not implemented

The implementation is vulnerable to fragment attacks

The TCP implementation does not completely respect the standard
TCP state machine

Alexandre Dulaunoy Packet Capture, Filtering and Analysis

Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

TCP reassembly
Implementation flaws in TCP reassembly tools
Attacking the TCP implementation
Countermeasures

Attacking the TCP implementation
Attacker setup

UML switch
tap0

UML switch
tap1

Target

Attacker

10.0.0.2 eth0:10.0.0.3

eth1:10.0.1.1

10.0.1.2

Router/fragrouter

tcpdump

Note: All is software based on User Mode Linux
Alexandre Dulaunoy Packet Capture, Filtering and Analysis

Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

TCP reassembly
Implementation flaws in TCP reassembly tools
Attacking the TCP implementation
Countermeasures

Attacking the TCP implementation
Constraints

Attacker and target need to be on different subnets

Cause: Fragrouter eats ARP responses from the attacker

On the router UML, /proc/sys/net/ipv4/ip forward must be 0

Avoid race conditions between attacker TCP/IP stack and fragrouter
Routing is done by fragrouter (user space)

Alexandre Dulaunoy Packet Capture, Filtering and Analysis

Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

TCP reassembly
Implementation flaws in TCP reassembly tools
Attacking the TCP implementation
Countermeasures

Attacking the TCP implementation
Methodology

At the router UML

Launch fragrouter with an attack on eth0
Launch fragrouter with IP forwarding on eth1 → return packets
tcpdump -n -s0 -w packets.cap

At the target UML

nc -l -p 2000 > receive.dat

At the attacker UML

cat data.dat | nc target 2000

Was the attack successful? → diff data.dat receive.dat

Launch reassembly tool on packets.cap :-)

Alexandre Dulaunoy Packet Capture, Filtering and Analysis

Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

TCP reassembly
Implementation flaws in TCP reassembly tools
Attacking the TCP implementation
Countermeasures

Attacking the TCP implementation
Fragrouter attacks

Attacks are named after the command line switches

Check capture process → B1 is regular IP forwarding

Ordered 16-byte fragments, fwd-overwriting → F7

3-whs, bad TCP checksum FIN/RST, ordered 1-byte segments →
T1

3-whs, ordered 2-byte segments, fwd-overwriting → T5

Alexandre Dulaunoy Packet Capture, Filtering and Analysis

Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

TCP reassembly
Implementation flaws in TCP reassembly tools
Attacking the TCP implementation
Countermeasures

Attacking the TCP implementation
Results

Attack Tcpflow Wireshark Tcptrace Tcpick
B1

√ √ √ √

T1 × × × ×
T5 × × × ×
F7 ×

√
× ×

IPv61 ×
√ √

×

In Wireshark was used the follow TCP stream feature
√

packets were correctly reassembled

× packets were not at all/wrongly reassembled

1Not really an attack
Alexandre Dulaunoy Packet Capture, Filtering and Analysis

Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

TCP reassembly
Implementation flaws in TCP reassembly tools
Attacking the TCP implementation
Countermeasures

Attacking the TCP reassembly software design
PCAP bomb

Problem

A vulnerable reassembly tool assumes that:

A TCP session is a 4-tuple

Consequences

Different streams are mixed in one file

Offset between streams due to random ISN (Initial Sequence
Number)

Target

Fill analyst’s hard disk

Memory exhaustion → kill high-level stream analysis software

Alexandre Dulaunoy Packet Capture, Filtering and Analysis

Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

TCP reassembly
Implementation flaws in TCP reassembly tools
Attacking the TCP implementation
Countermeasures

Attacking the TCP reassembly software design
PCAP bomb

SYN
1

SYN

2 3

ACK
FIN

ISN
1 SYN

1

SYN

2 3

ACK FIN
ISN

2

1 2 3 ? ? ? 1 2 3

ISN
2
 - ISN

1

Stream

(Source IP, Source Port, Destination IP, Destination Port)

TCP header

TCP payload byte

Alexandre Dulaunoy Packet Capture, Filtering and Analysis

Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

TCP reassembly
Implementation flaws in TCP reassembly tools
Attacking the TCP implementation
Countermeasures

Attacking the TCP reassembly software design
PCAP bomb

Proof of concept

Shell

tcpdump -i lo -s0 -w pcap-bomb.cap

i=1235

while [1]; do

j=0

while [$j -lt 5]; do

cat req.txt | socat - tcp:localhost:80,

sourceport=$i,reuseaddr

sleep 1

let j=$j+1

done

let i=i$i+1

done

Alexandre Dulaunoy Packet Capture, Filtering and Analysis

Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

TCP reassembly
Implementation flaws in TCP reassembly tools
Attacking the TCP implementation
Countermeasures

Attacking the TCP reassembly software design
PCAP bomb

On average each flow has a size of 2GB.

Tune attack: Write a small PCAP program that maximize ISN
difference

Vulnerable tool: Tcpflow

Alexandre Dulaunoy Packet Capture, Filtering and Analysis

Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

TCP reassembly
Implementation flaws in TCP reassembly tools
Attacking the TCP implementation
Countermeasures

Hiding Streams 1/2

Problem

A vulnerable reassembly tool assumes that:

A TCP session is identified by a 4-tuple

Target

Hide intended web request i.e. rootkit download

How the attack works

Send dummy data (or just establish a TCP connection)

Download the real data using the same source port

Alexandre Dulaunoy Packet Capture, Filtering and Analysis

Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

TCP reassembly
Implementation flaws in TCP reassembly tools
Attacking the TCP implementation
Countermeasures

Hiding Streams

Proof of Concept

Shell

$ tcpdump -i lo -s0 -w hidden-stream.cap

$ cat empty.txt | socat - tcp:localhost:80,sourceport=1235,

reuseaddr

$ cat req.txt | socat - tcp:localhost:80,sourceport=1235,

reuseaddr

Notes

empty.txt is an empty file

req.txt contains an HTTP request to download a file

Alexandre Dulaunoy Packet Capture, Filtering and Analysis

Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

TCP reassembly
Implementation flaws in TCP reassembly tools
Attacking the TCP implementation
Countermeasures

Mitigating TCP reassembly errors
Countermeasures

Choose the right capture location (e.g. TTL attack)

Before analyzing a capture, know how the capture has been
performed

Filter out spoofed packed with a packet filter

Traffic normalization/scrubing before the capture takes place

Reassemble fragments
Discard packets with wrong checksums
Discard packets with wrong TTL

Compare results between different analysis tools

Alexandre Dulaunoy Packet Capture, Filtering and Analysis

Introduction
Libpcap-based

Digging in packet captures
Common issues

Attacking TCP reassembly
Q and A

Q and A

Thanks for listening.

alexandre.dulaunoy@circl.lu

Alexandre Dulaunoy Packet Capture, Filtering and Analysis

	Introduction
	Promiscuous mode
	BPF
	BPF - Filter Syntax
	BPF - Filter Syntax 2
	BPF - Filter Syntax 3
	BPF - Filter Syntax 4
	BPF - Filter Syntax 5
	BPF - Filter Syntax 5 bis
	BPF - Filter Syntax 6
	BPF - Filter Syntax 7
	Libpcap dev - a very quick introduction
	Libpcap - a very quick introduction 2/2

	Libpcap-based
	Libpcap libraries
	Libpcap tools

	Digging in packet captures
	Common issues
	
	

	Attacking TCP reassembly
	TCP reassembly
	Implementation flaws in TCP reassembly tools
	Attacking the TCP implementation
	Countermeasures

	Q and A

