
Network Data Capture in Honeynets
Berkeley Packet Capture (BPF) and Related Technologies : An

Introduction

Alexandre Dulaunoy

ASBL CSRRT-LU (Computer Security Research and Response Team Luxembourg)
http://www.csrrt.org/

1st February 2006

1 / 12

Promiscuous mode

Where can we capture the network data ? a layered approach

A network card can work in two modes, in non-promiscuous mode or
in promiscuous mode :

In non-promiscuous mode, the network card only accept the frame
targeted with is own MAC or broadcasted.
In promiscuous mode, the network card accept all the frame from the
wire. This permits to capture every packets.

ifconfig eth0 promisc

Other approaches possible to capture data (Bridge interception,
dup-to of a packet filtering, ...)

A side note regarding wireless network, promiscuous mode is only
capturing packet for the associated AP. You’ll need the monitor mode, to
get capturing everything without being associated to an AP or in ad-hoc
mode.

2 / 12

BPF History

How to get the data from the data link layers ?

BPF (Berkeley Packet Filter) sits between link-level driver and the
user space. BPF is protocol independant and use a
filter-before-buffering approach. (NIT on SunOS is using the
opposite approach).

BPF includes a machine abstraction to make the filtering (quite)
efficient.

BPF was part of the BSD4.4 but libpcap provide a portable BPF for
various operating systems.

The main application using libpcap (BPF) is tcpdump. Alternative
exists to libpcap from wiretap library or Fairly Fast Packet Filter.

Network data capture is a key component of a honeynet design.

3 / 12

BPF - Filter Syntax

How to filter specific host :

host myhostname
dst host myhostname
src host myhostname

How to filter specific ports :

port 111
dst port 111
src port 111

4 / 12

BPF - Filter Syntax

How to filter specific net :

net 192.168
dst net 192.168
src host 192.168

How to filter protocols :

ip proto \tcp
ether proto \ip

5 / 12

BPF - Filter Syntax

Combining expression :

&& -> concatenation
not -> negation
|| -> alternation (or)

Offset notation :

ip[8] Go the byte location 8 when not specified
check 1 byte

tcp[2:2] Go the byte location 2 and read 2 bytes
tcp[2:2] = 25 (similar to dst port 25)
Matching is also working tcp[30:4] = 0xDEADBEEF

6 / 12

Libpcap - a very quick introduction

How to open the link-layer device to get packet :

pcap_t *pcap_open_live(char *device, int snaplen,
int promisc, int to_ms,

char *ebuf)

How to use the BPF filtering :

int pcap_compile(pcap_t *p, struct bpf_program *fp,
char *str, int optimize,

bpf_u_int32 netmask)
int pcap_setfilter(pcap_t *p,

struct bpf_program *fp)

7 / 12

Libpcap - a very quick introduction 2/2

How to capture some packets :

u_char *pcap_next(pcap_t *p, struct pcap_pkthdr *h)

How to read the result (simplified) from the inlined structs :

sniff_ethernet addr
sniff_ip addr + SIZE_ETHERNET
sniff_tcp addr + SIZE_ETHERNET

+ {IP header length}
payload addr + SIZE_ETHERNET

+ {IP header length}
+ {TCP header length}

8 / 12

Libpcap libraries

You don’t like C and want to code fast for the workshop...
Here is a non-exhaustive list of libcap (and related) binding for other
languages :

Net::Pcap - Perl binding

pcap ruby - Ruby binding with a nice OO interface

pylibpcap - Python binding

MLpcap - ocaml binding ;-)

...

9 / 12

Libpcap tools

tcpdump, tcpslice

ngrep (you can pass regex search instead of offset search)

Ethereal/tEthereal

tcpdstat

tcptrace

ipsumdump

10 / 12

Digging in a real capture

The common capture that will be used in this workshop :
SHA1 - 9e2107c7d481a1a694b2c8692b99de0022ef40cd capture.cap
more than 500 MB of Data...

Where to start ? Focus on little events ? big events ?

How to cut the capture ? Slicing by date ? by size ?

You can use any of the tools proposed but ...

... you can build your own tools to ease your work.

Time reference is a critical part in forensic analysis.

Be imaginative.

11 / 12

Q and A

Thanks for listening.

http://www.csrrt.org.lu/

adulau@foo.be

12 / 12

	Introduction
	Promiscuous mode
	BPF
	BPF - Filter Syntax
	BPF - Filter Syntax 2
	BPF - Filter Syntax 3
	Libpcap - a very quick introduction
	Libpcap - a very quick introduction 2/2

	Libpcap-based
	Libpcap libraries
	Libpcap tools

	Digging in a real capture
	Q and A

