A reversed approach to security and software

engineering - Introduction

Alexandre Dulaunoy

8th January 2005

Contents

1 Security and software : a long antinomy

2 Vulnerability, Attack and attackers

3 Honeynets or how to catch attacks

3.1
3.2
3.3
3.4
3.5

3.6

3.7

History
Definition
Advantages/Disadvantages
Use of Honeynets/Honeypots
Type of Honeynets/Honeypots
3.5.1 low interaction
3.5.2 high-interaction oo
Evolution of Honeynets
3.6.1 GenerationI 0L
3.6.2 GenerationII
3.6.3 Virtual Honeynets
3.6.4 Distributed Honeynets
3.6.5 Hardware Honeynets
Legal aspects

4 Forensic analysis

4.1
4.2

Best practices and golden rules for forensic analysis
Tools for forensic analysis
4.2.1 Networktools
4.2.2 “File System” tools.o oL
4.2.3 Disassembler tools oL

http://foldoc.doc.ic.ac.uk/foldoc/foldoc.cgithacker+ethic

1 Security and software : a long antinomy

There is a very strange paradox between security and software engineering.
It’s very complex to build secure software that can resists to attacks or
having a stable operation in a computer environment. The issue came from
various source. One origin is the complexity surrounding software and its
operation. A software is always part of various components done by other
programmers and rely on them at different stages.

For example, a HTTP server is a using the underlying operating sys-
tem and can interact with other external programs. The HTTP server can
use system libraries but also built-in libraries. A simple operation like giv-
ing a page from a specific HT'TP request involves a multitude of software
components via different kind of interface and methods.

The analogy of babel tower (Software Architectures from an Escher
Perspective - http://trese.cs.utwente.nl/taosad/escher.htm). It’s an
utopia to build secure software but we will take the ride to try to achieve
this utopia. Another interesting point when doing software development,
implementation, maintenance is the trusting that can you have with the
system itself (Reflections on Trusting Trust, Communication of the ACM,
August 1984 Volume 27 Number 8).

Another interesting analogy is between security in the physical world
compared to the security in non-physical (digital) world. Why security in
the physical world seems more easy and secure? What are the differences
and the common ground ? Is it possible to gain the same level of security
in the non-physical world ?

An interesting point of view is a paper (M. Blaze. “Safe cracking for the
Computer Scientist.” U. Penn CIS Department Technical Report.) made
by Matt Blaze making a comparison between Safe cracking and “Computer
Science”. You’ll see that physical security can be also very very insecure
like any complex computing systems.

2 Vulnerability, Attack and attackers

The definition of a vulnerability in “computer science” refers to a weakness
in a system but also any opening in a system due to the system itself or
any other causes in its environment (e.g. a vulnerability can be created in a
system by setting up the wrong permission attribution on a file used by the
system).

Often vulnerabilities are closed in result of a security incident but not
often by proactive method of auditing during the development process. This
is evolving (check the various code checker tools) but it’s only at the early
stages. Vulnerabilities must be evaluated when designing not when dis-
tributing the software/system.

The definition of an attack is often the act to make a malicious act on a
system. A system can be composed of softwares, protocols, algorithms, data
structures, physical components... in the definition we don’t limit ourself to
specific system. This is also true to the attack itself, there are various kind
of attacks including physical. An attack can use one or more vulnerabilities
in order to make a malicious act and reach his goals.

The objectives of an attack are very variables and can be of any sort
including using a system to start other attacks, stealing bandwidth of the
network,... In order to full fit his/its objectives, an attacker can make differ-
ent actions/activities on the attacked system (e.g. removing logging entries,
installing back-door, ...).

3 Honeynets or how to catch attacks

Theory is very interesting in computer security but it’s only theory. Real
data, real attacks, real attackers are more interesting than any theoretical
security data and examples. But how can we catch attackers and real attacks
instead of elaborating theories 7 We need to create tools in order to gain
visibility in the real world of the attackers. One of the most important tool is
the honeynet. The purpose is to learn as much as possible from the attacks
but also the define the profile and the goals of the attackers... Honeynets
are not perfect but can be an effective research security tool.

3.1 History

We can say the first practical computer honeynet was created by Clifford
Stoll when he baited an Intruder by creating fictitious electronic document
about secret defense (Stalking The Wily Hacker, Communication of the
ACM May 1988 Volume 31 Number 5). The process was also used to
some extend by Bill Cheswick and described in a paper called “An Evening
with Berferd”. Various other works were made on the subject but the first
large project of honeynet was founded by various technical guys who want
to learn about the attacks and the attackers. The “Honeynet Project”
(http://www.honeynet.org/) was founded in 1999 in order to define and
provide resources to create honeynet. The concept was not very new but
they conceptually made the terminology and the new technical approach
used in the honeynet technologies. A large number of people participate to
the “Honeynet Project” due the approach taken when working in commu-
nity (Known Your Ennemy, The Honeynet Project, Addison Wesley) : Keep
It Small, Make It Fun, Communicate... The first honeynet were very simple
including a single computer that act as vulnerable system.

3.2 Definition

There is no single definition of what is a honeynet. The term is covering
a bunch of different type of systems. The objective of the system is to
be compromised in order to gather as much as possible information from
the its unauthorized or illicit use. A honeynet is not limited to a specific
technology or method, a lot of methods can be considered honeynet-like (e.g.
Including a false door with no trespassing in a building could be considered
as a honeynet-like technology). A honeynet/pot has no production value
and is generally running false production service.

3.3 Advantages/Disadvantages

What are the main advantages of running honeynets :

e Honeypots are very flexible. Compared to a production system you
can customize the system to fit fully its task to collect information.
That would be very difficult on existing production system.

e Learning. You can learn a lot from data collected by compromised
honeynets. New attacks could be discovered and analyzed in order to
make new protection measures against them

e Playground for security definition. Collecting the information from a
honeynet, you can reduce for example the false positive from a NIDS.

e Honeynet can works with encrypted data or new network infrastruc-
ture. In production environment, you want to keep a high of confiden-
tiality for data crossing the network. In Honeynet, you can implement
solutions to intercept encrypted communication.

What are the main disadvantages of running honeynets :

e Associated risks of running honeynets. A honeynet/honeypot system
is also a complex system. They are vulnerabilities for the honeynet
itself that extend the risk of the honeynet to be reuse to make for
example new attacks.

e Honeynets/honeypots view is very limited. They see only the attacks
they got. It’s not a global view but only a view of vulnerabilities
accessible for the honeynets. The view can be extended by distributed
honeynets. The limited view permits also to focus on the attack itself
and limit the interference generated by the environment.

3.4 Use of Honeynets/Honeypots

Two major usages exist for honeynets/honeypots one is to use it as a com-
panion to an existing production network (e.g. attackers can waste their
times by attacking honeynets instead of the real production system).Production
honeynets can protect a production network in order to detect earlier at-
tacks... but the risk can be important if you plan to implement a high in-
teraction honeynet in a corporate network. A lot of network administrator
got no time for managing their networks including honeynets can generate
new problems and more works. Great care must be taken for implementing
honeynets on real environment.

The second major usage is the research purpose. This purpose is to
fill the gap of information missing by security professional on real attacks
and attackers. The research honeynet is often easier to manage due to its
dedicated nature without any production constraints.

3.5 Type of Honeynets/Honeypots

There are two big categories of honeypots. The two categories are built
based on the level interaction that the attacker can have the honeypot.

3.5.1 low interaction

Low interaction honeypot often used an emulated approach to software. It’s
not the real software running but a small software making an emulation of
the possible interaction between the service and the attacker.

Some example of low interaction honeypot software :

e NFR BackOfficer Friendly. It’s a simple service for WIN32 preconfig-
ured to emulate well-known services (like FTP, Telnet and alike). The
software is very limited but can be used a starting point.

e Specter. It’s very similar NFR BackOfficer Friendly but more option
are available and can emulate false TCP /IP stack to act like a specific
Operating System.

e KFSensor. A WIN32 only proprietary

e Honeyd. It’s a free software (http://www.honeyd.org/) written by
Niels Provos can be easily modified and extend to support other Oper-
ating System and network services. An interesting feature is the basic
support for emulating IP routing, you can build easily virtual network
for evaluation.

A sample configuration for Honeyd :

create default

set default personality "Linux 2.2.14"

set default default tcp action block

add default udp port 53 "./scripts/dnstool.py"

3.5.2 high-interaction

There is a major difference between low interaction honeypot and high-
interaction as they provide a complete application including operating sys-
tem. High-interaction are not emulating software but are running the soft-
ware that could be vulnerable to attacks. The advantage is clear, the attack
can be a classical attack and we can collect all the interaction. The interac-
tion can be the keystroke entered by the attackers, the communication done
with external parties, compromised software installed,... Like that you can
learn the maximum from the attackers and making deduction based on the
data collected. The major issue with high-interaction honeypot is the major
level of complexity to manage and the various possible risks to mitigate.
Building high-interaction honeypot/honeynet is difficult and time consum-
ing. Some proprietary product exist for building high-interaction honeynet
like the Decoy Server (a product from Symantec). But high-interaction
honeynets are often customized honeynets infrastructure with specific and
dedicated tools.

3.6 Evolution of Honeynets

Here is the evolution of design of the honeynets from the “Honeynet Project”
but also some other project using honeynet-like technologies. The projects
are all using different method for data capture in order to log all the activities
of the attackers in the honeynet.

3.6.1 Generation I

3.6.2 Generation II

3.6.3 Virtual Honeynets

3.6.4 Distributed Honeynets

3.6.5 Hardware Honeynets

3.7 Legal aspects

There are a lot of legal incertitude around Honeynets and their usage.When
building and installing Honeynets, you must take great care of the various
security implication of running such kind of systems.

e The honeynet can aid of an attack. Various countries have laws

e punishing non-protected computer infrastructure in protection.
e The honeynet can be used to attack third parties.

e The question of privacy.

4 Forensic analysis

Warning : The images given for this course include malicious code on
it (including viruses) and maybe running malicious processes. Great care
must be taken to ensure that you do not infect your own system and that the
malicious software does not make any attempt to contact external networks.
It is recommended that you perform analysis on a dedicated network with
proper security.

Data and forensic analysis is the major important part of learning attacks
from crime scene.A honeypot is a crime scene where any digital crime can
be done. Capturing data of the attacks is one small part of Honeynets but
the analysis part is very important to get the maximum from your data
collected in the Honeynets.

4.1 Best practices and golden rules for forensic analysis

e Don’t work on the original data. Always make a working copy (without
altering) of the data and keep the original in the safe place.

e Make documentation of all action made during the analysis. Investi-
gation records must be kept in secure place and can be reuse to recover
modified data during the investigation.

e Don’t trust the system/data. Always (e.g. use external binaries) work
with “trusted” components.

e Correlate various data source. In order to confirm the findings and
enhance the various proofs.

4.2 Tools for forensic analysis

Various tools exist to help the coroner to dig into the scene of the crime.

4.2.1 Network tools

e Ethereal/tethereal (wiretap).
e tcpdump (libpcap).
e tcpreplay.

e Snort.

4.2.2 “File System” tools
e TCT (The Coroner’s Toolkit)

e TASK

Autopsy

e File

Strings
e dd

4.2.3 Disassembler tools

e gdb

objdump

gdb

(*)trace

e Fenris

IDA pro (proprietary)

