[image: image1.png]Global Smart Card Solutions

IBM GSCS Proposals for

PKCS#11 Extensions
RSA Workshop in San Mateo, California

October 7 to 9, 1998

Mike Hamann, mhamann@de.ibm.com

IBM Laboratory, Boeblingen, Germany

October 8, 1998
Proposals for extensions of the PKCS#11 Version 2.01 standard in order to support smart cards with cryptographic capabilities for generating digital signatures conforming with national digital signature acts / laws.

Background:

IBM's Global Smart Card Solution Division offers a Digital Signature Solution based on standard ISO 7816 compatible smart cards with cryptographic coprocessors like the IBM SignCard. During developing this solution some extensions to the PKCS#11 standard have been found necessary in the area of PIN status and handling of data objects.

The digital signature acts of European governments (e.g. Germany, Nordic Countries) propose a way to allow the user of a token to explicitly acknowledge the generation of a signature for each document to be signed. This requires a PIN (password, biometrics value) to be associated to each private signature key, so it can be verified before each digital signature is generated.

Proposals:

1. Extension of the C_GetTokenInfo 'Token Information Flags'

2. Extension of Private Key Objects (especially for RSA and DSA signing mechanism) to allow password protection and key usage counter

3. Definition of Standard Industry Data Objects (especially for Internet usage)

4. Extension of the R/W SO session to allow conditional update of private objects

1. Extension of the C_GetTokenInfo 'Token Information Flags'

Purpose: Improve the reporting of the 'normal user' and 'SO user' PIN (password, cardholder verification).

Special flags have to be provided to indicate the state of the password after manufacturing or SO operations in order to force the cardholder to change the password before any digital signature can be generated on the token. Flags may show the cardholder and SO the status of the retry counter before a new login attempt is performed. Additional flags required are:

CKF_USER_PIN_COUNT_LOW

CKF_USER_PIN_FINAL_TRY

CKF_USER_PIN_LOCKED

CKF_USER_PIN_NEEDS_TO_BE_CHANGED

CKF_SO_PIN_COUNT_LOW

CKF_SO_PIN_FINAL_TRY

CKF_SO_PIN_LOCKED

· 'count_low' means that at least one time an invalid PIN (password) has been entered before. This may indicate to the token (smart card) owner that someone else has tried to use a smart card.

· 'final_try' means that the user has only one try left to enter the correct PIN (password) and that he has to be very careful checking the pin pad before proceeding

· 'locked' means that the token (smart card) is locked because the PIN (password) has been entered incorrectly the maximum number of times

· 'needs_to_be_changed' means that the user (card holder) has to change the PIN (password) before continuing to use the smart card token (PIN / password has been set at token manufacturing time or later by C_InitToken or C_InitPIN functions). Optionally this flag may be set if the card detects that an expiration date for the PIN has been expired.

· PIN / password expiration date option. Would require an expiration date associated with PIN and the secure transfer of the date from the Cryptoki DLL to card at card insertion and the checking of this date at user login time.

-or- date is stored as data object on card and comparison is done in application outside card and Cryptoki

2. Extension of Private Key Objects (for RSA and DSA signing mechanism)
to allow password protection and key usage counter
Purpose: Improve the security of the digital signature operations for private key objects with the 'CKA_SIGN' plus new 'CKA_SIGN_SECURE' attribute set. This in order to meet digital signature legal requirements.

If 'CKA_SIGN_SECURE' is set, function 'C_SignInit' will require an extra PIN authentication to be performed per sign operation otherwise 'CKR_KEY_FUNCTION_NOT_PERMITED' will be returned. This authentication will be provided by an extended version of the 'C_SignInit' function e.g. called 'C_SignInitSecure' which provides the extra parameters 'pPin' and 'ulPinLen' (analog to function 'C_Login'). -OR- a new mechanism e.g. CKM_RSA_PKCS_SECURE may be used with extra PIN handling per function call.

The special ‘secure signature’ key would have a usage counter (32-bit integer) associated. This counter should be set to zero at key generation time (can be checked by card owner at card acceptance). The counter could be read out as key attribute.

For the maintenance of the 'key-PIN' additional functions and private key attributes analog to the ones available for the normal user's PIN are required.

Additional possible extension:

Provide new mechanism (e.g. CKM_RSA_PKCS_STAMPED), which combines the digital signature with the transfer of additional information like signature counter and date/time. E.g. use part of padding field of RSA with PSS for this.

3. Definition of Standard Industry Data Objects (especially for Internet
usage)

Purpose: Define PKCS#11 data objects for sharing card holder information secured with PKCS#11 token inherent algorithms for free access of multiple client applications.

By defining certain values for the 'CKA_APPLICATION' attribute some standard data objects may be defined with standard layout of 'CKA_VALUE'. Some proposed types are (ISCO stands for Industry Smart Card Object):

· ISCO_URL: URL List: bookmarks: frequently used internet HTTP links to launch

 the internet browser

· ISCO_VCARD: V-card:
business card details for insertion into the user's address book

· ISCO_LOGIN: Login: application login data (application, user-id, password) as private

 object to launch application

· ISCO_NOTE: Note: free format data e.g. secret notes in the private data area

In order to identify the security of the data object in addition to the two attributes 'CKA_PRIVATE' and 'CKA_MODIFIABLE' further attributes may be defined to identify:

· object may only be modified by security officer (SO login required - see proposal 4.)

· object only valid on this token (object value contains token's 16 bytes long serialNumber of CK_TOKEN_INFO as header) and is signed by the using application (public key may be part of object value)

· object is signed by application (signature part of object value)

· object is encrypted by application (wrapped key is part of object value)

Examples for further ISCO’s:

· Pointer to CA’s for different keys on card (e.g. link to server)

User’s preferences (IATA, Hotel, Car Rental)

4. Extension of the R/W SO session to allow conditional update of private
objects

Purpose: Allow security officer to modify certain SO-controlled data objects without the requirement of changing the user's PIN and login as normal user.

Define new 'CKA_SO_MODIFIABLE' attribute for objects, which may only be specified during object creation time and may be modified in R/W SO session. If set this object will be modifiable in a R/W SO session even if the 'CKA_PRIVATE' attribute is set.

Examples:

· modify secret login parameters to company owned systems

· update of secret / private keys used for authentication

Intellectual Property Statement:

Patents have been filed by IBM Corporation on the presentation of password status, the management of the PKCS#11 object storage, the storage methods of free defined data objects on a token, and the Virtual Signature Card concept.

Appendix for proposal 3:

The CKA_VALUE of the industry defined smart card data objects (ISCO) are structured in the following way.

1. VCard
The TLV structure for the VCard data object:

VCardInfo ::= SEQUENCE {

attribute VCardAttribute

}

VCardAttribute ::= SEQUENCE {

name

18-CharacterString,

value

19-CharacterString

}

The names of the attributes and their meaning are based on the most common elements used by different address book programs.

Name
Meaning
Organization

VERSION
version of the VCard standard; at the moment 2.1

N
name
“Lastname;Firstname;2.Firstname”

FN
name to display

ORG
organization
“Name;Department”

TITLE
title of the person

EMAIL;PREF;INTERNET
preferred email-address

NOTE
note

TEL;WORK;VOICE
commercial telephone number

TEL;WORK;FAX
commercial fax number

TEL;PAGER;VOICE
commercial pager number

ADR;WORK
commercial address
“Office;Street;Town;State;PostalCode;Country”

URL;WORK
commercial WWW-page

TEL;HOME;VOICE
private telephone number

TEL;HOME;FAX
private fax number

TEL;CELL;VOICE
private cellular phone number

ADR;HOME
private address
“Street;Town;State;PostalCode;Country”

URL;HOME
private WWW-page

REV
time of last modification
“YYYYMMDD” + ‘T’ + “HHMMSS” + ‘Z’

The version (VERSION) and last modification / revision (REV) fields are mandatory, all other attributes are optional.

A filled structure could look like:

[(16-SEQUENCE,’0 univ’,true) 331]

(

[(16-SEQUENCE,’0 univ’,true) 14]

{

[(18-CharacterString,’0 univ’,false) 7]
(“VERSION”)

[(19-CharacterString,’0 univ’,false) 3]
(“2.1”)

}

[(16-SEQUENCE,’0 univ’,true) 21]

{

[(18-CharacterString,’0 univ’,false) 1]
(“N”)

[(19-CharacterString,’0 univ’,false) 16]
(“Kaisser;Michael;””)

}

[(16-SEQUENCE,’0 univ’,true) 27]

{

[(18-CharacterString,’0 univ’,false) 3]
(“ORG”)

[(19-CharacterString,’0 univ’,false) 20]
(“IBM Deutschland GmbH”)

}

[(16-SEQUENCE,’0 univ’,true) 23]

{

[(18-CharacterString,’0 univ’,false) 3]
(“REV”)

[(19-CharacterString,’0 univ’,false) 16]
(“19981003T2211109Z”)

}

}

2. URL Bookmark
The TLV structure for this data object:

BookmarkInfo ::= SEQUENCE {

entry
BookmarkEntry

}

BookmarkEntry ::= SEQUENCE {

link

18-CharacterString,

description
19-CharacterString OPTIONAL

}

A filled structure could look like:

[(16-SEQUENCE,’0 univ’,true) 75]

(

[(16-SEQUENCE,’0 univ’,true) 49]

{

[(18-CharacterString,’0 univ’,false) 27]
(“http://www.chipcard.ibm.com”)

[(19-CharacterString,’0 univ’,false) 18]
(“SmartCard Homepage”)

}

[(16-SEQUENCE,’0 univ’,true) 22]

{

[(18-CharacterString,’0 univ’,false) 21]
(“http://www.utimaco.de”)

}

}

3. Note
The character string is directly saved in the “VALUE” attribute without any special formatting.

4. Login-Object
The TLV-structure for this data object:

LoginInfo ::= SEQUENCE {

entry
LoginEntry

}

LoginEntry ::= SEQUENCE {

appl

18-CharacterString,

userid

19-CharacterString,

pwd

20-CharacterString

}

A filled structure could look like:

[(16-SEQUENCE,’0 univ’,true) 69]

(

[(16-SEQUENCE,’0 univ’,true) 33]

{

[(18-CharacterString,’0 univ’,false) 6]
(“IBM VM”)

[(19-CharacterString,’0 univ’,false) 8]
(“mkaisser”)

[(20-CharacterString,’0 univ’,false) 8]
(“password”)

}

[(16-SEQUENCE,’0 univ’,true) 32]

{

[(18-CharacterString,’0 univ’,false) 11]
(“Lotus Notes”)

[(19-CharacterString,’0 univ’,false) 8]
(“DE066863”)

[(20-CharacterString,’0 univ’,false) 7]
(“secret1”)

}

}

The pwd values are saved in the TLV structure in clear text, only displayed in the SCM using one * for each password character. To ensure that the Login object cannot be read out of the card it is only possible to create and store this object in the private card space which is secured by the user password. Thus the CKA_PRIVATE attribute must be TRUE.

PAGE
2
Page

